
Perl version 5.8.8 documentation - Test::Builder

Page 1http://perldoc.perl.org

NAME
Test::Builder - Backend for building test libraries

SYNOPSIS
 package My::Test::Module;
 use Test::Builder;
 require Exporter;
 @ISA = qw(Exporter);
 @EXPORT = qw(ok);

 my $Test = Test::Builder->new;
 $Test->output('my_logfile');

 sub import {
 my($self) = shift;
 my $pack = caller;

 $Test->exported_to($pack);
 $Test->plan(@_);

 $self->export_to_level(1, $self, 'ok');
 }

 sub ok {
 my($test, $name) = @_;

 $Test->ok($test, $name);
 }

DESCRIPTION
Test::Simple and Test::More have proven to be popular testing modules,
 but they're not always
flexible enough. Test::Builder provides the a
 building block upon which to write your own test libraries
which can
 work together.

Construction
new

 my $Test = Test::Builder->new;

Returns a Test::Builder object representing the current state of the
 test.

Since you only run one test per program new always returns the same
 Test::Builder object. No
matter how many times you call new(), you're
 getting the same object. This is called a
singleton. This is done so that
 multiple modules share such global information as the test
counter and
 where test output is going.

If you want a completely new Test::Builder object different from the
 singleton, use create.

create

 my $Test = Test::Builder->create;

Ok, so there can be more than one Test::Builder object and this is how
 you get it. You might
use this instead of new() if you're testing
 a Test::Builder based module, but otherwise you
probably want new.

NOTE: the implementation is not complete. level, for example, is
 still shared amongst all

Perl version 5.8.8 documentation - Test::Builder

Page 2http://perldoc.perl.org

Test::Builder objects, even ones created using
 this method. Also, the method name may
change in the future.

reset

 $Test->reset;

Reinitializes the Test::Builder singleton to its original state.
 Mostly useful for tests run in
persistent environments where the same
 test might be run multiple times in the same process.

Setting up tests
These methods are for setting up tests and declaring how many there
 are. You usually only want to
call one of these methods.

exported_to

 my $pack = $Test->exported_to;
 $Test->exported_to($pack);

Tells Test::Builder what package you exported your functions to.
 This is important for getting
TODO tests right.

plan

 $Test->plan('no_plan');
 $Test->plan(skip_all => $reason);
 $Test->plan(tests => $num_tests);

A convenient way to set up your tests. Call this and Test::Builder
 will print the appropriate
headers and take the appropriate actions.

If you call plan(), don't call any of the other methods below.

expected_tests

 my $max = $Test->expected_tests;
 $Test->expected_tests($max);

Gets/sets the # of tests we expect this test to run and prints out
 the appropriate headers.

no_plan

 $Test->no_plan;

Declares that this test will run an indeterminate # of tests.

has_plan

 $plan = $Test->has_plan

Find out whether a plan has been defined. $plan is either undef (no plan has been set),
no_plan (indeterminate # of tests) or an integer (the number of expected tests).

skip_all

 $Test->skip_all;
 $Test->skip_all($reason);

Skips all the tests, using the given $reason. Exits immediately with 0.

Running tests
These actually run the tests, analogous to the functions in
 Test::More.

$name is always optional.

Perl version 5.8.8 documentation - Test::Builder

Page 3http://perldoc.perl.org

ok

 $Test->ok($test, $name);

Your basic test. Pass if $test is true, fail if $test is false. Just
 like Test::Simple's ok().

is_eq

 $Test->is_eq($got, $expected, $name);

Like Test::More's is(). Checks if $got eq $expected. This is the
 string version.

is_num

 $Test->is_num($got, $expected, $name);

Like Test::More's is(). Checks if $got == $expected. This is the
 numeric version.

isnt_eq

 $Test->isnt_eq($got, $dont_expect, $name);

Like Test::More's isnt(). Checks if $got ne $dont_expect. This is
 the string version.

isnt_num

 $Test->isnt_num($got, $dont_expect, $name);

Like Test::More's isnt(). Checks if $got ne $dont_expect. This is
 the numeric version.

like

 $Test->like($this, qr/$regex/, $name);
 $Test->like($this, '/$regex/', $name);

Like Test::More's like(). Checks if $this matches the given $regex.

You'll want to avoid qr// if you want your tests to work before 5.005.

unlike

 $Test->unlike($this, qr/$regex/, $name);
 $Test->unlike($this, '/$regex/', $name);

Like Test::More's unlike(). Checks if $this does not match the
 given $regex.

maybe_regex

 $Test->maybe_regex(qr/$regex/);
 $Test->maybe_regex('/$regex/');

Convenience method for building testing functions that take regular
 expressions as
arguments, but need to work before perl 5.005.

Takes a quoted regular expression produced by qr//, or a string
 representing a regular
expression.

Returns a Perl value which may be used instead of the corresponding
 regular expression, or
undef if it's argument is not recognised.

For example, a version of like(), sans the useful diagnostic messages,
 could be written as:

 sub laconic_like {
 my ($self, $this, $regex, $name) = @_;
 my $usable_regex = $self->maybe_regex($regex);
 die "expecting regex, found '$regex'\n"
 unless $usable_regex;

Perl version 5.8.8 documentation - Test::Builder

Page 4http://perldoc.perl.org

 $self->ok($this =~ m/$usable_regex/, $name);
 }

cmp_ok

 $Test->cmp_ok($this, $type, $that, $name);

Works just like Test::More's cmp_ok().

 $Test->cmp_ok($big_num, '!=', $other_big_num);

BAIL_OUT

 $Test->BAIL_OUT($reason);

Indicates to the Test::Harness that things are going so badly all
 testing should terminate. This
includes running any additional test
 scripts.

It will exit with 255.

skip

 $Test->skip;
 $Test->skip($why);

Skips the current test, reporting $why.

todo_skip

 $Test->todo_skip;
 $Test->todo_skip($why);

Like skip(), only it will declare the test as failing and TODO. Similar
 to

 print "not ok $tnum # TODO $why\n";

skip_rest

 $Test->skip_rest;
 $Test->skip_rest($reason);

Like skip(), only it skips all the rest of the tests you plan to run
 and terminates the test.

If you're running under no_plan, it skips once and terminates the
 test.

Test style
level

 $Test->level($how_high);

How far up the call stack should $Test look when reporting where the
 test failed.

Defaults to 1.

Setting $Test::Builder::Level overrides. This is typically useful
 localized:

 {
 local $Test::Builder::Level = 2;
 $Test->ok($test);
 }

use_numbers

 $Test->use_numbers($on_or_off);

Perl version 5.8.8 documentation - Test::Builder

Page 5http://perldoc.perl.org

Whether or not the test should output numbers. That is, this if true:

 ok 1
 ok 2
 ok 3

or this if false

 ok
 ok
 ok

Most useful when you can't depend on the test output order, such as
 when threads or forking
is involved.

Defaults to on.

no_diag

 $Test->no_diag($no_diag);

If set true no diagnostics will be printed. This includes calls to
 diag().

no_ending

 $Test->no_ending($no_ending);

Normally, Test::Builder does some extra diagnostics when the test
 ends. It also changes the
exit code as described below.

If this is true, none of that will be done.

no_header

 $Test->no_header($no_header);

If set to true, no "1..N" header will be printed.

Output
Controlling where the test output goes.

It's ok for your test to change where STDOUT and STDERR point to,
 Test::Builder's default output
settings will not be affected.

diag

 $Test->diag(@msgs);

Prints out the given @msgs. Like print, arguments are simply
 appended together.

Normally, it uses the failure_output() handle, but if this is for a
 TODO test, the todo_output()
handle is used.

Output will be indented and marked with a # so as not to interfere
 with test output. A newline
will be put on the end if there isn't one
 already.

We encourage using this rather than calling print directly.

Returns false. Why? Because diag() is often used in conjunction with
 a failing test (ok() ||
diag()) it "passes through" the failure.

 return ok(...) || diag(...);

_print

 $Test->_print(@msgs);

Perl version 5.8.8 documentation - Test::Builder

Page 6http://perldoc.perl.org

Prints to the output() filehandle.

_print_diag

 $Test->_print_diag(@msg);

Like _print, but prints to the current diagnostic filehandle.

output

 $Test->output($fh);
 $Test->output($file);

Where normal "ok/not ok" test output should go.

Defaults to STDOUT.

failure_output

 $Test->failure_output($fh);
 $Test->failure_output($file);

Where diagnostic output on test failures and diag() should go.

Defaults to STDERR.

todo_output

 $Test->todo_output($fh);
 $Test->todo_output($file);

Where diagnostics about todo test failures and diag() should go.

Defaults to STDOUT.

carp

 $tb->carp(@message);

Warns with @message but the message will appear to come from the
 point where the original
test function was called ($tb-caller>).

croak

 $tb->croak(@message);

Dies with @message but the message will appear to come from the
 point where the original
test function was called ($tb-caller>).

Test Status and Info
current_test

 my $curr_test = $Test->current_test;
 $Test->current_test($num);

Gets/sets the current test number we're on. You usually shouldn't
 have to set this.

If set forward, the details of the missing tests are filled in as 'unknown'.
 if set backward, the
details of the intervening tests are deleted. You
 can erase history if you really want to.

summary

 my @tests = $Test->summary;

A simple summary of the tests so far. True for pass, false for fail.
 This is a logical pass/fail, so
todos are passes.

Perl version 5.8.8 documentation - Test::Builder

Page 7http://perldoc.perl.org

Of course, test #1 is $tests[0], etc...

details

 my @tests = $Test->details;

Like summary(), but with a lot more detail.

 $tests[$test_num - 1] =
 { 'ok' => is the test considered a pass?
 actual_ok => did it literally say 'ok'?
 name => name of the test (if any)
 type => type of test (if any, see below).
 reason => reason for the above (if any)
 };

'ok' is true if Test::Harness will consider the test to be a pass.

'actual_ok' is a reflection of whether or not the test literally
 printed 'ok' or 'not ok'. This is for
examining the result of 'todo'
 tests.

'name' is the name of the test.

'type' indicates if it was a special test. Normal tests have a type
 of ''. Type can be one of the
following:

 skip see skip()
 todo see todo()
 todo_skip see todo_skip()
 unknown see below

Sometimes the Test::Builder test counter is incremented without it
 printing any test output, for
example, when current_test() is changed.
 In these cases, Test::Builder doesn't know the result
of the test, so
 it's type is 'unkown'. These details for these tests are filled in.
 They are
considered ok, but the name and actual_ok is left undef.

For example "not ok 23 - hole count # TODO insufficient donuts" would
 result in this structure:

 $tests[22] = # 23 - 1, since arrays start from 0.
 { ok => 1, # logically, the test passed since it's
todo
 actual_ok => 0, # in absolute terms, it failed
 name => 'hole count',
 type => 'todo',
 reason => 'insufficient donuts'
 };

todo

 my $todo_reason = $Test->todo;
 my $todo_reason = $Test->todo($pack);

todo() looks for a $TODO variable in your tests. If set, all tests
 will be considered 'todo' (see
Test::More and Test::Harness for
 details). Returns the reason (ie. the value of $TODO) if
running as
 todo tests, false otherwise.

todo() is about finding the right package to look for $TODO in. It
 uses the exported_to()
package to find it. If that's not set, it's
 pretty good at guessing the right package to look at
based on $Level.

Sometimes there is some confusion about where todo() should be looking
 for the $TODO
variable. If you want to be sure, tell it explicitly
 what $pack to use.

caller

Perl version 5.8.8 documentation - Test::Builder

Page 8http://perldoc.perl.org

 my $package = $Test->caller;
 my($pack, $file, $line) = $Test->caller;
 my($pack, $file, $line) = $Test->caller($height);

Like the normal caller(), except it reports according to your level().

_sanity_check

 $self->_sanity_check();

Runs a bunch of end of test sanity checks to make sure reality came
 through ok. If anything is
wrong it will die with a fairly friendly
 error message.

_whoa

 $self->_whoa($check, $description);

A sanity check, similar to assert(). If the $check is true, something
 has gone horribly wrong. It
will die with the given $description and
 a note to contact the author.

_my_exit

 _my_exit($exit_num);

Perl seems to have some trouble with exiting inside an END block. 5.005_03
 and 5.6.1 both
seem to do odd things. Instead, this function edits $?
 directly. It should ONLY be called from
inside an END block. It
 doesn't actually exit, that's your job.

EXIT CODES
If all your tests passed, Test::Builder will exit with zero (which is
 normal). If anything failed it will exit
with how many failed. If
 you run less (or more) tests than you planned, the missing (or extras)
 will be
considered failures. If no tests were ever run Test::Builder
 will throw a warning and exit with 255. If
the test died, even after
 having successfully completed all its tests, it will still be
 considered a failure
and will exit with 255.

So the exit codes are...

 0 all tests successful
 255 test died or all passed but wrong # of tests run
 any other number how many failed (including missing or extras)

If you fail more than 254 tests, it will be reported as 254.

THREADS
In perl 5.8.1 and later, Test::Builder is thread-safe. The test
 number is shared amongst all threads.
This means if one thread sets
 the test number using current_test() they will all be effected.

While versions earlier than 5.8.1 had threads they contain too many
 bugs to support.

Test::Builder is only thread-aware if threads.pm is loaded before
 Test::Builder.

EXAMPLES
CPAN can provide the best examples. Test::Simple, Test::More,
 Test::Exception and
Test::Differences all use Test::Builder.

SEE ALSO
Test::Simple, Test::More, Test::Harness

Perl version 5.8.8 documentation - Test::Builder

Page 9http://perldoc.perl.org

AUTHORS
Original code by chromatic, maintained by Michael G Schwern <schwern@pobox.com>

COPYRIGHT
Copyright 2002, 2004 by chromatic <chromatic@wgz.org> and
 Michael G Schwern <
schwern@pobox.com>.

This program is free software; you can redistribute it and/or modify it under the same terms as Perl
itself.

See http://www.perl.com/perl/misc/Artistic.html

