
Perl version 5.8.8 documentation - Net::protoent

Page 1http://perldoc.perl.org

NAME
Net::protoent - by-name interface to Perl's built-in getproto*() functions

SYNOPSIS
 use Net::protoent;
 $p = getprotobyname(shift || 'tcp') || die "no proto";
 printf "proto for %s is %d, aliases are %s\n",
 $p->name, $p->proto, "@{$p->aliases}";

 use Net::protoent qw(:FIELDS);
 getprotobyname(shift || 'tcp') || die "no proto";
 print "proto for $p_name is $p_proto, aliases are @p_aliases\n";

DESCRIPTION
This module's default exports override the core getprotoent(),
 getprotobyname(), and getnetbyport()
functions, replacing them with
 versions that return "Net::protoent" objects. They take default
 second
arguments of "tcp". This object has methods that return the
 similarly named structure field name from
the C's protoent structure
 from netdb.h; namely name, aliases, and proto. The aliases method
 returns
an array reference, the rest scalars.

You may also import all the structure fields directly into your namespace
 as regular variables using
the :FIELDS import tag. (Note that this still
 overrides your core functions.) Access these fields as
variables named
 with a preceding p_. Thus, $proto_obj->name() corresponds to
 $p_name if you
import the fields. Array references are available as
 regular array variables, so for example @{
$proto_obj->aliases()
 } would be simply @p_aliases.

The getproto() function is a simple front-end that forwards a numeric
 argument to getprotobyport(),
and the rest to getprotobyname().

To access this functionality without the core overrides,
 pass the use an empty import list, and then
access
 function functions with their full qualified names.
 On the other hand, the built-ins are still
available
 via the CORE:: pseudo-package.

NOTE
While this class is currently implemented using the Class::Struct
 module to build a struct-like class,
you shouldn't rely upon this.

AUTHOR
Tom Christiansen

