
Perl version 5.8.8 documentation - CPAN

Page 1http://perldoc.perl.org

NAME
CPAN - query, download and build perl modules from CPAN sites

SYNOPSIS
Interactive mode:

 perl -MCPAN -e shell;

Batch mode:

 use CPAN;

 autobundle, clean, install, make, recompile, test

STATUS
This module will eventually be replaced by CPANPLUS. CPANPLUS is kind
 of a modern rewrite from
ground up with greater extensibility and more
 features but no full compatibility. If you're new to
CPAN.pm, you
 probably should investigate if CPANPLUS is the better choice for you.
 If you're already
used to CPAN.pm you're welcome to continue using it,
 if you accept that its development is mostly
(though not completely)
 stalled.

DESCRIPTION
The CPAN module is designed to automate the make and install of perl
 modules and extensions. It
includes some primitive searching capabilities and
 knows how to use Net::FTP or LWP (or lynx or an
external ftp client)
 to fetch the raw data from the net.

Modules are fetched from one or more of the mirrored CPAN
 (Comprehensive Perl Archive Network)
sites and unpacked in a dedicated
 directory.

The CPAN module also supports the concept of named and versioned bundles of modules. Bundles
simplify the handling of sets of
 related modules. See Bundles below.

The package contains a session manager and a cache manager. There is
 no status retained between
sessions. The session manager keeps track
 of what has been fetched, built and installed in the
current
 session. The cache manager keeps track of the disk space occupied by
 the make processes
and deletes excess space according to a simple FIFO
 mechanism.

For extended searching capabilities there's a plugin for CPAN available, CPAN::WAIT. CPAN::WAIT
is a full-text search engine
 that indexes all documents available in CPAN authors directories. If
CPAN::WAIT is installed on your system, the interactive shell of
 CPAN.pm will enable the wq, wr, wd,
wl, and wh commands
 which send queries to the WAIT server that has been configured for your

installation.

All other methods provided are accessible in a programmer style and in an
 interactive shell style.

Interactive Mode
The interactive mode is entered by running

 perl -MCPAN -e shell

which puts you into a readline interface. You will have the most fun if
 you install Term::ReadKey and
Term::ReadLine to enjoy both history and
 command completion.

Once you are on the command line, type 'h' and the rest should be
 self-explanatory.

The function call shell takes two optional arguments, one is the
 prompt, the second is the default
initial command line (the latter
 only works if a real ReadLine interface module is installed).

Perl version 5.8.8 documentation - CPAN

Page 2http://perldoc.perl.org

The most common uses of the interactive modes are

Searching for authors, bundles, distribution files and modules

There are corresponding one-letter commands a, b, d, and m
 for each of the four categories and
another, i for any of the
 mentioned four. Each of the four entities is implemented as a class
 with
slightly differing methods for displaying an object.

Arguments you pass to these commands are either strings exactly matching
 the identification
string of an object or regular expressions that are
 then matched case-insensitively against various
attributes of the
 objects. The parser recognizes a regular expression only if you
 enclose it
between two slashes.

The principle is that the number of found objects influences how an
 item is displayed. If the search
finds one item, the result is
 displayed with the rather verbose method as_string, but if we find

more than one, we display each object with the terse method
 <as_glimpse>.

make, test, install, clean modules or distributions

These commands take any number of arguments and investigate what is
 necessary to perform
the action. If the argument is a distribution
 file name (recognized by embedded slashes), it is
processed. If it is
 a module, CPAN determines the distribution file in which this module
 is included
and processes that, following any dependencies named in
 the module's Makefile.PL (this behavior
is controlled by prerequisites_policy.)

Any make or test are run unconditionally. An

 install <distribution_file>

also is run unconditionally. But for

 install <module>

CPAN checks if an install is actually needed for it and prints module up to date in the case that the
distribution file containing
 the module doesn't need to be updated.

CPAN also keeps track of what it has done within the current session
 and doesn't try to build a
package a second time regardless if it
 succeeded or not. The force command takes as a first
argument the
 method to invoke (currently: make, test, or install) and executes the
 command
from scratch.

Example:

 cpan> install OpenGL
 OpenGL is up to date.
 cpan> force install OpenGL
 Running make
 OpenGL-0.4/
 OpenGL-0.4/COPYRIGHT
 [...]

A clean command results in a

 make clean

being executed within the distribution file's working directory.

get, readme, look module or distribution

get downloads a distribution file without further action. readme
 displays the README file of the
associated distribution. Look gets
 and untars (if not yet done) the distribution file, changes to the

appropriate directory and opens a subshell process in that directory.

ls author

ls lists all distribution files in and below an author's CPAN
 directory. Only those files that contain

Perl version 5.8.8 documentation - CPAN

Page 3http://perldoc.perl.org

modules are listed and if
 there is more than one for any given module, only the most recent one
 is
listed.

Signals

CPAN.pm installs signal handlers for SIGINT and SIGTERM. While you are
 in the cpan-shell it is
intended that you can press ^C anytime and
 return to the cpan-shell prompt. A SIGTERM will
cause the cpan-shell
 to clean up and leave the shell loop. You can emulate the effect of a

SIGTERM by sending two consecutive SIGINTs, which usually means by
 pressing ^C twice.

CPAN.pm ignores a SIGPIPE. If the user sets inactivity_timeout, a
 SIGALRM is used during the
run of the perl Makefile.PL subprocess.

CPAN::Shell
The commands that are available in the shell interface are methods in
 the package CPAN::Shell. If
you enter the shell command, all your
 input is split by the Text::ParseWords::shellwords() routine
which
 acts like most shells do. The first word is being interpreted as the
 method to be called and the
rest of the words are treated as arguments
 to this method. Continuation lines are supported if a line
ends with a
 literal backslash.

autobundle
autobundle writes a bundle file into the $CPAN::Config->{cpan_home}/Bundle directory. The
file contains
 a list of all modules that are both available from CPAN and currently
 installed within
@INC. The name of the bundle file is based on the
 current date and a counter.

recompile
recompile() is a very special command in that it takes no argument and
 runs the make/test/install
cycle with brute force over all installed
 dynamically loadable extensions (aka XS modules) with 'force'
in
 effect. The primary purpose of this command is to finish a network
 installation. Imagine, you have a
common source tree for two different
 architectures. You decide to do a completely independent fresh

installation. You start on one architecture with the help of a Bundle
 file produced earlier. CPAN installs
the whole Bundle for you, but
 when you try to repeat the job on the second architecture, CPAN

responds with a "Foo up to date" message for all modules. So you
 invoke CPAN's recompile on
the second architecture and you're done.

Another popular use for recompile is to act as a rescue in case your
 perl breaks binary
compatibility. If one of the modules that CPAN uses
 is in turn depending on binary compatibility (so
you cannot run CPAN
 commands), then you should try the CPAN::Nox module for recovery.

The four CPAN::* Classes: Author, Bundle, Module, Distribution
Although it may be considered internal, the class hierarchy does matter
 for both users and
programmer. CPAN.pm deals with above mentioned four
 classes, and all those classes share a set of
methods. A classical
 single polymorphism is in effect. A metaclass object registers all
 objects of all
kinds and indexes them with a string. The strings
 referencing objects have a separated namespace
(well, not completely
 separated):

 Namespace Class

 words containing a "/" (slash) Distribution
 words starting with Bundle:: Bundle
 everything else Module or Author

Modules know their associated Distribution objects. They always refer
 to the most recent official
release. Developers may mark their releases
 as unstable development versions (by inserting an
underbar into the
 module version number which will also be reflected in the distribution
 name when
you run 'make dist'), so the really hottest and newest distribution is not always the default. If a module
Foo circulates on CPAN in both version 1.23 and 1.23_90, CPAN.pm offers a convenient way to
install version 1.23 by saying

Perl version 5.8.8 documentation - CPAN

Page 4http://perldoc.perl.org

 install Foo

This would install the complete distribution file (say
 BAR/Foo-1.23.tar.gz) with all accompanying
material. But if you would
 like to install version 1.23_90, you need to know where the
 distribution file
resides on CPAN relative to the authors/id/
 directory. If the author is BAR, this might be
BAR/Foo-1.23_90.tar.gz;
 so you would have to say

 install BAR/Foo-1.23_90.tar.gz

The first example will be driven by an object of the class
 CPAN::Module, the second by an object of
class CPAN::Distribution.

Programmer's interface
If you do not enter the shell, the available shell commands are both
 available as methods (
CPAN::Shell->install(...)) and as
 functions in the calling package (install(...)).

There's currently only one class that has a stable interface -
 CPAN::Shell. All commands that are
available in the CPAN shell are
 methods of the class CPAN::Shell. Each of the commands that
produce
 listings of modules (r, autobundle, u) also return a list of
 the IDs of all modules within the
list.

expand($type,@things)

The IDs of all objects available within a program are strings that can
 be expanded to the
corresponding real objects with the CPAN::Shell->expand("Module",@things) method.
Expand returns a
 list of CPAN::Module objects according to the @things arguments
 given. In
scalar context it only returns the first element of the
 list.

expandany(@things)

Like expand, but returns objects of the appropriate type, i.e.
 CPAN::Bundle objects for bundles,
CPAN::Module objects for modules and
 CPAN::Distribution objects fro distributions.

Programming Examples

This enables the programmer to do operations that combine
 functionalities that are available in
the shell.

 # install everything that is outdated on my disk:
 perl -MCPAN -e 'CPAN::Shell->install(CPAN::Shell->r)'

 # install my favorite programs if necessary:
 for $mod (qw(Net::FTP Digest::MD5 Data::Dumper)){
 my $obj = CPAN::Shell->expand('Module',$mod);
 $obj->install;
 }

 # list all modules on my disk that have no VERSION number
 for $mod (CPAN::Shell->expand("Module","/./")){
	 next unless $mod->inst_file;
 # MakeMaker convention for undefined $VERSION:
	 next unless $mod->inst_version eq "undef";
	 print "No VERSION in ", $mod->id, "\n";
 }

 # find out which distribution on CPAN contains a module:
 print CPAN::Shell->expand("Module","Apache::Constants")->cpan_file

Or if you want to write a cronjob to watch The CPAN, you could list
 all modules that need
updating. First a quick and dirty way:

Perl version 5.8.8 documentation - CPAN

Page 5http://perldoc.perl.org

 perl -e 'use CPAN; CPAN::Shell->r;'

If you don't want to get any output in the case that all modules are
 up to date, you can parse the
output of above command for the regular
 expression //modules are up to date// and decide to mail
the output
 only if it doesn't match. Ick?

If you prefer to do it more in a programmer style in one single
 process, maybe something like this
suits you better:

 # list all modules on my disk that have newer versions on CPAN
 for $mod (CPAN::Shell->expand("Module","/./")){
 next unless $mod->inst_file;
 next if $mod->uptodate;
 printf "Module %s is installed as %s, could be updated to %s from
CPAN\n",
 $mod->id, $mod->inst_version, $mod->cpan_version;
 }

If that gives you too much output every day, you maybe only want to
 watch for three modules. You
can write

 for $mod (CPAN::Shell->expand("Module","/Apache|LWP|CGI/")){

as the first line instead. Or you can combine some of the above
 tricks:

 # watch only for a new mod_perl module
 $mod = CPAN::Shell->expand("Module","mod_perl");
 exit if $mod->uptodate;
 # new mod_perl arrived, let me know all update recommendations
 CPAN::Shell->r;

Methods in the other Classes
The programming interface for the classes CPAN::Module,
 CPAN::Distribution, CPAN::Bundle, and
CPAN::Author is still considered
 beta and partially even alpha. In the following paragraphs only those

methods are documented that have proven useful over a longer time and
 thus are unlikely to change.

CPAN::Author::as_glimpse()

Returns a one-line description of the author

CPAN::Author::as_string()

Returns a multi-line description of the author

CPAN::Author::email()

Returns the author's email address

CPAN::Author::fullname()

Returns the author's name

CPAN::Author::name()

An alias for fullname

CPAN::Bundle::as_glimpse()

Returns a one-line description of the bundle

CPAN::Bundle::as_string()

Returns a multi-line description of the bundle

CPAN::Bundle::clean()

Perl version 5.8.8 documentation - CPAN

Page 6http://perldoc.perl.org

Recursively runs the clean method on all items contained in the bundle.

CPAN::Bundle::contains()

Returns a list of objects' IDs contained in a bundle. The associated
 objects may be bundles,
modules or distributions.

CPAN::Bundle::force($method,@args)

Forces CPAN to perform a task that normally would have failed. Force
 takes as arguments a
method name to be called and any number of
 additional arguments that should be passed to
the called method. The
 internals of the object get the needed changes so that CPAN.pm does

not refuse to take the action. The force is passed recursively to
 all contained objects.

CPAN::Bundle::get()

Recursively runs the get method on all items contained in the bundle

CPAN::Bundle::inst_file()

Returns the highest installed version of the bundle in either @INC or $CPAN::Config-
{cpan_home}>. Note that this is different from
 CPAN::Module::inst_file.

CPAN::Bundle::inst_version()

Like CPAN::Bundle::inst_file, but returns the $VERSION

CPAN::Bundle::uptodate()

Returns 1 if the bundle itself and all its members are uptodate.

CPAN::Bundle::install()

Recursively runs the install method on all items contained in the bundle

CPAN::Bundle::make()

Recursively runs the make method on all items contained in the bundle

CPAN::Bundle::readme()

Recursively runs the readme method on all items contained in the bundle

CPAN::Bundle::test()

Recursively runs the test method on all items contained in the bundle

CPAN::Distribution::as_glimpse()

Returns a one-line description of the distribution

CPAN::Distribution::as_string()

Returns a multi-line description of the distribution

CPAN::Distribution::clean()

Changes to the directory where the distribution has been unpacked and
 runs make clean
there.

CPAN::Distribution::containsmods()

Returns a list of IDs of modules contained in a distribution file.
 Only works for distributions
listed in the 02packages.details.txt.gz
 file. This typically means that only the most recent
version of a
 distribution is covered.

CPAN::Distribution::cvs_import()

Changes to the directory where the distribution has been unpacked and
 runs something like

 cvs -d $cvs_root import -m $cvs_log $cvs_dir $userid v$version

Perl version 5.8.8 documentation - CPAN

Page 7http://perldoc.perl.org

there.

CPAN::Distribution::dir()

Returns the directory into which this distribution has been unpacked.

CPAN::Distribution::force($method,@args)

Forces CPAN to perform a task that normally would have failed. Force
 takes as arguments a
method name to be called and any number of
 additional arguments that should be passed to
the called method. The
 internals of the object get the needed changes so that CPAN.pm does

not refuse to take the action.

CPAN::Distribution::get()

Downloads the distribution from CPAN and unpacks it. Does nothing if
 the distribution has
already been downloaded and unpacked within the
 current session.

CPAN::Distribution::install()

Changes to the directory where the distribution has been unpacked and
 runs the external
command make install there. If make has not
 yet been run, it will be run first. A make
test will be issued in
 any case and if this fails, the install will be canceled. The
 cancellation
can be avoided by letting force run the install for
 you.

CPAN::Distribution::isa_perl()

Returns 1 if this distribution file seems to be a perl distribution.
 Normally this is derived from
the file name only, but the index from
 CPAN can contain a hint to achieve a return value of
true for other
 filenames too.

CPAN::Distribution::look()

Changes to the directory where the distribution has been unpacked and
 opens a subshell
there. Exiting the subshell returns.

CPAN::Distribution::make()

First runs the get method to make sure the distribution is
 downloaded and unpacked.
Changes to the directory where the
 distribution has been unpacked and runs the external
commands perl
 Makefile.PL and make there.

CPAN::Distribution::prereq_pm()

Returns the hash reference that has been announced by a distribution
 as the PREREQ_PM
hash in the Makefile.PL. Note: works only after an
 attempt has been made to make the
distribution. Returns undef
 otherwise.

CPAN::Distribution::readme()

Downloads the README file associated with a distribution and runs it
 through the pager
specified in $CPAN::Config-{pager}>.

CPAN::Distribution::test()

Changes to the directory where the distribution has been unpacked and
 runs make test
there.

CPAN::Distribution::uptodate()

Returns 1 if all the modules contained in the distribution are
 uptodate. Relies on
containsmods.

CPAN::Index::force_reload()

Forces a reload of all indices.

CPAN::Index::reload()

Perl version 5.8.8 documentation - CPAN

Page 8http://perldoc.perl.org

Reloads all indices if they have been read more than $CPAN::Config-{index_expire}> days.

CPAN::InfoObj::dump()

CPAN::Author, CPAN::Bundle, CPAN::Module, and CPAN::Distribution
 inherit this method. It
prints the data structure associated with an
 object. Useful for debugging. Note: the data
structure is considered
 internal and thus subject to change without notice.

CPAN::Module::as_glimpse()

Returns a one-line description of the module

CPAN::Module::as_string()

Returns a multi-line description of the module

CPAN::Module::clean()

Runs a clean on the distribution associated with this module.

CPAN::Module::cpan_file()

Returns the filename on CPAN that is associated with the module.

CPAN::Module::cpan_version()

Returns the latest version of this module available on CPAN.

CPAN::Module::cvs_import()

Runs a cvs_import on the distribution associated with this module.

CPAN::Module::description()

Returns a 44 character description of this module. Only available for
 modules listed in The
Module List (CPAN/modules/00modlist.long.html
 or 00modlist.long.txt.gz)

CPAN::Module::force($method,@args)

Forces CPAN to perform a task that normally would have failed. Force
 takes as arguments a
method name to be called and any number of
 additional arguments that should be passed to
the called method. The
 internals of the object get the needed changes so that CPAN.pm does

not refuse to take the action.

CPAN::Module::get()

Runs a get on the distribution associated with this module.

CPAN::Module::inst_file()

Returns the filename of the module found in @INC. The first file found
 is reported just like perl
itself stops searching @INC when it finds a
 module.

CPAN::Module::inst_version()

Returns the version number of the module in readable format.

CPAN::Module::install()

Runs an install on the distribution associated with this module.

CPAN::Module::look()

Changes to the directory where the distribution associated with this
 module has been
unpacked and opens a subshell there. Exiting the
 subshell returns.

CPAN::Module::make()

Runs a make on the distribution associated with this module.

CPAN::Module::manpage_headline()

Perl version 5.8.8 documentation - CPAN

Page 9http://perldoc.perl.org

If module is installed, peeks into the module's manpage, reads the
 headline and returns it.
Moreover, if the module has been downloaded
 within this session, does the equivalent on the
downloaded module even
 if it is not installed.

CPAN::Module::readme()

Runs a readme on the distribution associated with this module.

CPAN::Module::test()

Runs a test on the distribution associated with this module.

CPAN::Module::uptodate()

Returns 1 if the module is installed and up-to-date.

CPAN::Module::userid()

Returns the author's ID of the module.

Cache Manager
Currently the cache manager only keeps track of the build directory
 ($CPAN::Config->{build_dir}). It is
a simple FIFO mechanism that
 deletes complete directories below build_dir as soon as the size of
all directories there gets bigger than $CPAN::Config->{build_cache}
 (in MB). The contents of this
cache may be used for later
 re-installations that you intend to do manually, but will never be
 trusted
by CPAN itself. This is due to the fact that the user might
 use these directories for building modules
on different architectures.

There is another directory ($CPAN::Config->{keep_source_where}) where
 the original distribution files
are kept. This directory is not
 covered by the cache manager and must be controlled by the user. If

you choose to have the same directory as build_dir and as
 keep_source_where directory, then your
sources will be deleted with
 the same fifo mechanism.

Bundles
A bundle is just a perl module in the namespace Bundle:: that does not
 define any functions or
methods. It usually only contains documentation.

It starts like a perl module with a package declaration and a $VERSION
 variable. After that the pod
section looks like any other pod with the
 only difference being that one special pod section exists
starting with
 (verbatim):

	 =head1 CONTENTS

In this pod section each line obeys the format

 Module_Name [Version_String] [- optional text]

The only required part is the first field, the name of a module
 (e.g. Foo::Bar, ie. not the name of the
distribution file). The rest
 of the line is optional. The comment part is delimited by a dash just
 as in the
man page header.

The distribution of a bundle should follow the same convention as
 other distributions.

Bundles are treated specially in the CPAN package. If you say 'install
 Bundle::Tkkit' (assuming such a
bundle exists), CPAN will install all
 the modules in the CONTENTS section of the pod. You can install
your
 own Bundles locally by placing a conformant Bundle file somewhere into
 your @INC path. The
autobundle() command which is available in the
 shell interface does that for you by including all
currently installed
 modules in a snapshot bundle file.

Perl version 5.8.8 documentation - CPAN

Page 10http://perldoc.perl.org

Prerequisites
If you have a local mirror of CPAN and can access all files with
 "file:" URLs, then you only need a perl
better than perl5.003 to run
 this module. Otherwise Net::FTP is strongly recommended. LWP may be

required for non-UNIX systems or if your nearest CPAN site is
 associated with a URL that is not ftp:
.

If you have neither Net::FTP nor LWP, there is a fallback mechanism
 implemented for an external ftp
command or for an external lynx
 command.

Finding packages and VERSION
This module presumes that all packages on CPAN

declare their $VERSION variable in an easy to parse manner. This
 prerequisite can hardly be
relaxed because it consumes far too much
 memory to load all packages into the running program
just to determine
 the $VERSION variable. Currently all programs that are dealing with
 version use
something like this

 perl -MExtUtils::MakeMaker -le \
 'print MM->parse_version(shift)' filename

If you are author of a package and wonder if your $VERSION can be
 parsed, please try the above
method.

come as compressed or gzipped tarfiles or as zip files and contain a
 Makefile.PL (well, we try to
handle a bit more, but without much
 enthusiasm).

Debugging
The debugging of this module is a bit complex, because we have
 interferences of the software
producing the indices on CPAN, of the
 mirroring process on CPAN, of packaging, of configuration, of

synchronicity, and of bugs within CPAN.pm.

For code debugging in interactive mode you can try "o debug" which
 will list options for debugging the
various parts of the code. You
 should know that "o debug" has built-in completion support.

For data debugging there is the dump command which takes the same
 arguments as make/test/install
and outputs the object's Data::Dumper
 dump.

Floppy, Zip, Offline Mode
CPAN.pm works nicely without network too. If you maintain machines
 that are not networked at all,
you should consider working with file:
 URLs. Of course, you have to collect your modules somewhere
first. So
 you might use CPAN.pm to put together all you need on a networked
 machine. Then copy the
$CPAN::Config->{keep_source_where} (but not
 $CPAN::Config->{build_dir}) directory on a floppy.
This floppy is kind
 of a personal CPAN. CPAN.pm on the non-networked machines works nicely
 with
this floppy. See also below the paragraph about CD-ROM support.

CONFIGURATION
When the CPAN module is used for the first time, a configuration
 dialog tries to determine a couple of
site specific options. The
 result of the dialog is stored in a hash reference $CPAN::Config
 in a file
CPAN/Config.pm.

The default values defined in the CPAN/Config.pm file can be
 overridden in a user specific file:
CPAN/MyConfig.pm. Such a file is
 best placed in $HOME/.cpan/CPAN/MyConfig.pm, because
$HOME/.cpan is
 added to the search path of the CPAN module before the use() or
 require()
statements.

The configuration dialog can be started any time later again by
 issueing the command o conf
init in the CPAN shell.

Currently the following keys in the hash reference $CPAN::Config are
 defined:

Perl version 5.8.8 documentation - CPAN

Page 11http://perldoc.perl.org

 build_cache size of cache for directories to build modules
 build_dir locally accessible directory to build modules
 index_expire after this many days refetch index files
 cache_metadata use serializer to cache metadata
 cpan_home local directory reserved for this package
 dontload_hash anonymous hash: modules in the keys will not be
 loaded by the CPAN::has_inst() routine
 gzip		 location of external program gzip
 histfile file to maintain history between sessions
 histsize maximum number of lines to keep in histfile
 inactivity_timeout breaks interactive Makefile.PLs after this
 many seconds inactivity. Set to 0 to never break.
 inhibit_startup_message
 if true, does not print the startup message
 keep_source_where directory in which to keep the source (if we do)
 make location of external make program
 make_arg	 arguments that should always be passed to 'make'
 make_install_arg same as make_arg for 'make install'
 makepl_arg	 arguments passed to 'perl Makefile.PL'
 pager location of external program more (or any pager)
 prerequisites_policy
 what to do if you are missing module prerequisites
 ('follow' automatically, 'ask' me, or 'ignore')
 proxy_user username for accessing an authenticating proxy
 proxy_pass password for accessing an authenticating proxy
 scan_cache	 controls scanning of cache ('atstart' or 'never')
 tar location of external program tar
 term_is_latin if true internal UTF-8 is translated to ISO-8859-1
 (and nonsense for characters outside latin range)
 unzip location of external program unzip
 urllist	 arrayref to nearby CPAN sites (or equivalent locations)
 wait_list arrayref to a wait server to try (See CPAN::WAIT)
 ftp_proxy, } the three usual variables for configuring
 http_proxy, } proxy requests. Both as CPAN::Config variables
 no_proxy } and as environment variables configurable.

You can set and query each of these options interactively in the cpan
 shell with the command set
defined within the o conf command:

o conf <scalar option>

prints the current value of the scalar option

o conf <scalar option> <value>

Sets the value of the scalar option to value

o conf <list option>

prints the current value of the list option in MakeMaker's
 neatvalue format.

o conf <list option> [shift|pop]

shifts or pops the array in the list option variable

o conf <list option> [unshift|push|splice] <list>

works like the corresponding perl commands.

Perl version 5.8.8 documentation - CPAN

Page 12http://perldoc.perl.org

Note on urllist parameter's format
urllist parameters are URLs according to RFC 1738. We do a little
 guessing if your URL is not
compliant, but if you have problems with
 file URLs, please try the correct format. Either:

 file://localhost/whatever/ftp/pub/CPAN/

or

 file:///home/ftp/pub/CPAN/

urllist parameter has CD-ROM support
The urllist parameter of the configuration table contains a list of
 URLs that are to be used for
downloading. If the list contains any file URLs, CPAN always tries to get files from there first. This

feature is disabled for index files. So the recommendation for the
 owner of a CD-ROM with CPAN
contents is: include your local, possibly
 outdated CD-ROM as a file URL at the end of urllist, e.g.

 o conf urllist push file://localhost/CDROM/CPAN

CPAN.pm will then fetch the index files from one of the CPAN sites
 that come at the beginning of
urllist. It will later check for each
 module if there is a local copy of the most recent version.

Another peculiarity of urllist is that the site that we could
 successfully fetch the last file from
automatically gets a preference
 token and is tried as the first site for the next request. So if you
 add a
new site at runtime it may happen that the previously preferred
 site will be tried another time. This
means that if you want to disallow
 a site for the next transfer, it must be explicitly removed from
 urllist.

SECURITY
There's no strong security layer in CPAN.pm. CPAN.pm helps you to
 install foreign, unmasked,
unsigned code on your machine. We compare
 to a checksum that comes from the net just as the
distribution file
 itself. If somebody has managed to tamper with the distribution file,
 they may have as
well tampered with the CHECKSUMS file. Future
 development will go towards strong authentication.

EXPORT
Most functions in package CPAN are exported per default. The reason
 for this is that the primary use
is intended for the cpan shell or for
 one-liners.

POPULATE AN INSTALLATION WITH LOTS OF MODULES
Populating a freshly installed perl with my favorite modules is pretty
 easy if you maintain a private
bundle definition file. To get a useful
 blueprint of a bundle definition file, the command autobundle can
be used
 on the CPAN shell command line. This command writes a bundle definition
 file for all
modules that are installed for the currently running perl
 interpreter. It's recommended to run this
command only once and from then
 on maintain the file manually under a private name, say

Bundle/my_bundle.pm. With a clever bundle file you can then simply say

 cpan> install Bundle::my_bundle

then answer a few questions and then go out for a coffee.

Maintaining a bundle definition file means keeping track of two
 things: dependencies and interactivity.
CPAN.pm sometimes fails on
 calculating dependencies because not all modules define all
MakeMaker
 attributes correctly, so a bundle definition file should specify
 prerequisites as early as
possible. On the other hand, it's a bit
 annoying that many distributions need some interactive
configuring. So
 what I try to accomplish in my private bundle file is to have the
 packages that need to
be configured early in the file and the gentle
 ones later, so I can go out after a few minutes and leave
CPAN.pm
 untended.

Perl version 5.8.8 documentation - CPAN

Page 13http://perldoc.perl.org

WORKING WITH CPAN.pm BEHIND FIREWALLS
Thanks to Graham Barr for contributing the following paragraphs about
 the interaction between perl,
and various firewall configurations. For
 further informations on firewalls, it is recommended to consult
the
 documentation that comes with the ncftp program. If you are unable to
 go through the firewall with
a simple Perl setup, it is very likely
 that you can configure ncftp so that it works for your firewall.

Three basic types of firewalls
Firewalls can be categorized into three basic types.

http firewall

This is where the firewall machine runs a web server and to access the
 outside world you
must do it via the web server. If you set environment
 variables like http_proxy or ftp_proxy to a
values beginning with http://
 or in your web browser you have to set proxy information then
you know
 you are running an http firewall.

To access servers outside these types of firewalls with perl (even for
 ftp) you will need to use
LWP.

ftp firewall

This where the firewall machine runs an ftp server. This kind of
 firewall will only let you access
ftp servers outside the firewall.
 This is usually done by connecting to the firewall with ftp, then

entering a username like "user@outside.host.com"

To access servers outside these type of firewalls with perl you
 will need to use Net::FTP.

One way visibility

I say one way visibility as these firewalls try to make themselves look
 invisible to the users
inside the firewall. An FTP data connection is
 normally created by sending the remote server
your IP address and then
 listening for the connection. But the remote server will not be able to
connect to you because of the firewall. So for these types of firewall
 FTP connections need to
be done in a passive mode.

There are two that I can think off.

SOCKS

If you are using a SOCKS firewall you will need to compile perl and link
 it with the
SOCKS library, this is what is normally called a 'socksified'
 perl. With this executable
you will be able to connect to servers outside
 the firewall as if it is not there.

IP Masquerade

This is the firewall implemented in the Linux kernel, it allows you to
 hide a complete
network behind one IP address. With this firewall no
 special compiling is needed as
you can access hosts directly.

For accessing ftp servers behind such firewalls you may need to set
 the environment
variable FTP_PASSIVE to a true value, e.g.

 env FTP_PASSIVE=1 perl -MCPAN -eshell

or

 perl -MCPAN -e '$ENV{FTP_PASSIVE} = 1; shell'

Configuring lynx or ncftp for going through a firewall
If you can go through your firewall with e.g. lynx, presumably with a
 command such as

 /usr/local/bin/lynx -pscott:tiger

then you would configure CPAN.pm with the command

Perl version 5.8.8 documentation - CPAN

Page 14http://perldoc.perl.org

 o conf lynx "/usr/local/bin/lynx -pscott:tiger"

That's all. Similarly for ncftp or ftp, you would configure something
 like

 o conf ncftp "/usr/bin/ncftp -f /home/scott/ncftplogin.cfg"

Your mileage may vary...

FAQ
1)

I installed a new version of module X but CPAN keeps saying,
 I have the old version installed

Most probably you do have the old version installed. This can
 happen if a module installs itself
into a different directory in the
 @INC path than it was previously installed. This is not really a

CPAN.pm problem, you would have the same problem when installing the
 module manually.
The easiest way to prevent this behaviour is to add
 the argument UNINST=1 to the make
install call, and that is why
 many people add this argument permanently by configuring

 o conf make_install_arg UNINST=1

2)

So why is UNINST=1 not the default?

Because there are people who have their precise expectations about who
 may install where in
the @INC path and who uses which @INC array. In
 fine tuned environments UNINST=1 can
cause damage.

3)

I want to clean up my mess, and install a new perl along with
 all modules I have. How do I go
about it?

Run the autobundle command for your old perl and optionally rename the
 resulting bundle file
(e.g. Bundle/mybundle.pm), install the new perl
 with the Configure option prefix, e.g.

 ./Configure -Dprefix=/usr/local/perl-5.6.78.9

Install the bundle file you produced in the first step with something like

 cpan> install Bundle::mybundle

and you're done.

4)

When I install bundles or multiple modules with one command
 there is too much output to
keep track of.

You may want to configure something like

 o conf make_arg "| tee -ai /root/.cpan/logs/make.out"
 o conf make_install_arg "| tee -ai
/root/.cpan/logs/make_install.out"

so that STDOUT is captured in a file for later inspection.

5)

I am not root, how can I install a module in a personal directory?

You will most probably like something like this:

 o conf makepl_arg "LIB=~/myperl/lib \
 INSTALLMAN1DIR=~/myperl/man/man1 \

Perl version 5.8.8 documentation - CPAN

Page 15http://perldoc.perl.org

 INSTALLMAN3DIR=~/myperl/man/man3"
 install Sybase::Sybperl

You can make this setting permanent like all o conf settings with o conf commit.

You will have to add ~/myperl/man to the MANPATH environment variable
 and also tell your
perl programs to look into ~/myperl/lib, e.g. by
 including

 use lib "$ENV{HOME}/myperl/lib";

or setting the PERL5LIB environment variable.

Another thing you should bear in mind is that the UNINST parameter
 should never be set if
you are not root.

6)

How to get a package, unwrap it, and make a change before building it?

 look Sybase::Sybperl

7)

I installed a Bundle and had a couple of fails. When I
 retried, everything resolved nicely. Can
this be fixed to work
 on first try?

The reason for this is that CPAN does not know the dependencies of all
 modules when it
starts out. To decide about the additional items to
 install, it just uses data found in the
generated Makefile. An
 undetected missing piece breaks the process. But it may well be that

your Bundle installs some prerequisite later than some depending item
 and thus your second
try is able to resolve everything. Please note,
 CPAN.pm does not know the dependency tree
in advance and cannot sort
 the queue of things to install in a topologically correct order. It

resolves perfectly well IFF all modules declare the prerequisites
 correctly with the
PREREQ_PM attribute to MakeMaker. For bundles which
 fail and you need to install often, it
is recommended sort the Bundle
 definition file manually. It is planned to improve the metadata
situation for dependencies on CPAN in general, but this will still
 take some time.

8)

In our intranet we have many modules for internal use. How
 can I integrate these modules
with CPAN.pm but without uploading
 the modules to CPAN?

Have a look at the CPAN::Site module.

9)

When I run CPAN's shell, I get error msg about line 1 to 4,
 setting meta input/output via the
/etc/inputrc file.

Some versions of readline are picky about capitalization in the
 /etc/inputrc file and specifically
RedHat 6.2 comes with a
 /etc/inputrc that contains the word on in lowercase. Change the

occurrences of on to On and the bug should disappear.

10)

Some authors have strange characters in their names.

Internally CPAN.pm uses the UTF-8 charset. If your terminal is
 expecting ISO-8859-1 charset,
a converter can be activated by setting
 term_is_latin to a true value in your config file. One
way of doing so
 would be

 cpan> ! $CPAN::Config->{term_is_latin}=1

Extended support for converters will be made available as soon as perl
 becomes stable with
regard to charset issues.

Perl version 5.8.8 documentation - CPAN

Page 16http://perldoc.perl.org

BUGS
We should give coverage for all of the CPAN and not just the PAUSE
 part, right? In this discussion
CPAN and PAUSE have become equal --
 but they are not. PAUSE is authors/, modules/ and scripts/.
CPAN is
 PAUSE plus the clpa/, doc/, misc/, ports/, and src/.

Future development should be directed towards a better integration of
 the other parts.

If a Makefile.PL requires special customization of libraries, prompts
 the user for special input, etc.
then you may find CPAN is not able to
 build the distribution. In that case, you should attempt the

traditional method of building a Perl module package from a shell.

AUTHOR
Andreas Koenig <andreas.koenig@anima.de>

TRANSLATIONS
Kawai,Takanori provides a Japanese translation of this manpage at

http://member.nifty.ne.jp/hippo2000/perltips/CPAN.htm

SEE ALSO
perl(1), CPAN::Nox(3)

